
Copyright @ 2018 ijearst. All rights reserved. 

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH  

SCIENCE AND TECHNOLOGY 
Volume.02, IssueNo.03, December -2018, Pages: 681-688 

 
 

 

LATENCY AND POWER OPTIMIZED AES CRYPTOGRAPHY 

SYSTEM USING MODIFIED MIXCOLUMNE 
 

1.SIDDINA NAGAMANI,2. B.V RAMANA 

1. M. Tech Student, Dept. of ECE, BVC INSTITUTE OF TECHNOLOGY & SCIENCES, AMALAPURAM, A.P 

2.Associate Professor, Dept. of ECE, BVC INSTITUTE OF TECHNOLOGY & SCIENCES, AMALAPURAM, 

A.P 

 

ABSTRACT: 

This project plays vital role in all type of communication applications. This project designs a novel low-

transition linear feedback shift register (LFSR) that is based on some new observations about the output sequence of a 

conventional LFSR. Security of a hardware implementation can be compromised by a random fault or a deliberate 

attack. The traditional testing methods are good at detecting random faults, but they do not provide to secure all type 

of attacks. It requires a small set of deterministic tests to cover maximum percentage of single stuck-at faults. Thus, the 

test execution time is much shorter (at least two orders of magnitude). It has a higher resistance against stuck-at fault 

type of hardware Trojans. Further, this project can be extended to decrease power by using scan bit swapping LFSR. 

In this algorithm, all test patterns to circuit are generated using low power LFSR and, generated patterns are reordered, 

in such a way; power will be decreased while testing application. But applying symmetric key encryption algorithm on 

more complex multimedia data (mostly images); we might face the problem of computational overhead. In modified 

AES algorithm instead of using Mixcolumne overheads on data; permutation step is used. 

KEYWORDS: Linear feedback shit register, Advanced Encryption Standards, Scan chain reordering, Trojansns, 

stuck-at fault, Hardware optimization. 

 

INTRODUCTION: 

THE fast development of Internet-of-Thing (IoT) 

devices enables the massive integration of technologies 

from sensing technology, communication technology, 

data pr..ocessing, to cloud computing, and artificial 

intelligence. In this scenario, sensors in the perception 

layer collect data from the environment and do fast 

processing. Then, these data are transmitted through 

the network layers over the Internet to the cloud. In 

the cloud, data are further processed by different  

applications, for example, big data applications or data 

miningapplications to make decisions and/or to notify 

users, etc. However, IoT devices and data transmitted 

through multilayer networks may contain private data 

or secrete data; while the Internet environment 

exposes security issues such as personal privacy, cyber-

attacks, and organized crimes. This recently raises the 

concerns about the security and privacy of the IoTs 

[1]–[3]. The solution to security and privacy problems 

is to include security features such as device 

identification, device/user authentication, and data 

encryption. These security functions are often based  

 

on the cryptographic algorithms, including public-key 

cryptography and symmetric cryptography, which 

occupy processing power and increase power and  

energy consumption. In contrast, IoT devices are 

supposed to be constrained low-cost devices with 

limited processing power, limited memory footprint, 

and even limited power/energy budget, for example, 

power-harvesting devices and batterybased devices. 

This leads to the importance of optimizing 

cryptographic algorithms in hardware for cost, 

throughput, and especially power and energy 

consumption. However, cost, throughput, and 

power/energy consumption are different features 

which are hard to achieve at the same time. In this 

paper, we chose to find a good tradeoff among them 

for advanced encryption standard (AES) [4], a widely-

used block cipher for emerging IoT proposals, such as 

IEEE 802.15.4 [5], LoraWAN [6], Sigfox [7], and 

ZWave [8]. We also made comparison  with an 

extreme lightweight data encryption algorithm 

PRESENT [9], a candidate for highly constrained 



Copyright @ 2018 ijearst. All rights reserved. 

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH  

SCIENCE AND TECHNOLOGY 
Volume.02, IssueNo.03, December -2018, Pages: 681-688 

devices. PRESENT is a hardware-oriented block 

cipher with reduced security level but it has small area 

footprint and very lowpower consumption. However, 

to the best of our knowledge, lightweight block 

ciphers, such as PRESENT, are not yet adopted to 

any IoT proposals. From its standardization in 2001 

by the U.S. National Institute of Standards and 

Technology (NIST) to replace data  encryption 

standard, AES has been studied by researchers in 

terms of security, performance, and hardware/software 

implementations. In terms of security, different IoT 

applications may require different security levels with 

different power/energy budgets and different 

throughputs. At the algorithmic level, security level 

depends on the design of the algorithm and the length 

of the key. AES supports multiple security levels by 

providing three different key sizes. AES is proven to 

support long-term and very long-term security. 

Because of its popularity and proved security, AES is 

widely used in data encryption, security protocols, and 

secure applications. The optimization for AES in 

hardware is not only beneficial to IoT applications but 

also to other applications, which have the same 

constraints. In terms of implementation and 

performance, AES is designed to benefit from 

software optimization in modern computing systems. 

However, AES implementation in software not only 

introduces delay to data processing and transmission, 

but also increases the power and energy consumption. 

This is the main limitation of AES to constrained 

devices. 

ADVANCED ENCRYPTION STANDARD (AES):- 

Federal Information Processing Standards 

Publications (FIPS PUBS) are issued by the National 

Institute of Standards and Technology (NIST) after 

approval by the Secretary of Commerce pursuant to 

Section 5131 of the Information Technology 

Management Reform Act of 1996 (Public Law 104-

106) and the Computer Security Act of 1987 (Public 

Law 100-235).The Advanced Encryption Standard 

(AES) specifies a FIPS-approved cryptographic 

algorithm that can be used to protect electronic data. 

The AES algorithm is a symmetric block cipher that 

can encrypt (encipher) and decrypt (decipher) 

information. Encryption converts data to an 

unintelligible form called cipher text; decrypting the 

cipher text converts the data back into its original 

form, called plaintext. The AES algorithm is capable 

of using cryptographic keys of 128, 192, and 256 bits 

to encrypt and decrypt data in blocks of 128 bits.This 

standard specifies the Rijndael algorithm, a symmetric 

block cipher that can process data blocks of 128 bits, 

using cipher keys with lengths of 128, 192, and 256 

bits.Rijndael was designed to handle additional block 

sizes and key lengths; however they are not adopted in 

this standard. Throughout the remainder of this 

standard, the algorithm specified here in will be 

referred to as “the AES algorithm.” The algorithm 

may be used with the three different key lengths 

indicated above, and therefore these different 

“flavours” may be referred to as “AES-128”, “AES-

192”, and “AES-256”. 

This specification includes the following sections: 

1. Definitions of terms, acronyms, and algorithm 

parameters, symbols, and functions. 

2. Notation and conventions used in the algorithm 

specification, including the ordering and numbering of 

bits, bytes, and words. 

3. Mathematical properties that is useful in 

understanding the algorithm. 

4. Algorithm specification, covering the key expansion, 

encryption, and decryption routines. 

5. Implementation issues, such as key length support, 

keying restrictions, and additional block/key/round 

sizes. 

The standard concludes with several appendices that 

include step-by-step examples for Key. At the start of 

the Cipher, the input is copied to the State array using 

the conventions. After an initial Round Key addition, 

the State array is transformed by implementing a 

round function 10, 12, or 14 times (depending on the 

key length), with the final round differing slightly from 

the first Nr -1 rounds. The final State is then copied to 

the output.The round function is parameterized using 

a key schedule that consists of a one-dimensional array 

of four-byte words derived using the Key Expansion 

routine.The Cipher is described in the pseudo code. 

The individual transformations - 

Sub Bytes (), Shift Rows (), Mix Columns (), and 

AddRoundKey () – process the State and are 

described in the following subsections.All Nr rounds 

are identical with the exception of the final round, 

which doesNot include the Mix Columns () 

transformation. 

A block cipher processes the data blocks of fixed 

size. Usually, the size of a message is larger than the 

block size. Hence, the long message is divided into a 

series of sequential message blocks, and the cipher 

operates on these blocks one at a time. 

 
AES architecture. 



Copyright @ 2018 ijearst. All rights reserved. 

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH  

SCIENCE AND TECHNOLOGY 
Volume.02, IssueNo.03, December -2018, Pages: 681-688 

To reduce area and power consumption in the 

datapath, we minimized the number of flip-flops and 

control logics in the datapath by using shift registers 

with a special organization. Shift registers help simplify 

loading data and loading key steps. The 32-b of both 

plaintext and key are loaded at the same time into the 

state register and the key register by using shift 

operations. By minimizing the number of flip-flops, we 

also reduced the number of clock buffers and the 

power consumption of the clock tree because clock 

buffers in the clock tree consume a large amount of 

power. A further optimization is to select S-boxes with 

minimal power dissipation. Fig. shows the organization 

of our proposed state register. The state register is 

organized so that after loading the input data and the 

input key, the encryption is done by shifting the data 

32 b in each clock cycle. The state register consists  of 

sixteen 8-b registers (forming a “state matrix”) which 

are further divided into four 4-stage shift registers. 

AES standard specifies that ShiftRow is a permutation 

operation on the rows of the state matrix, while 

MixColum is an operation on the columns. However, 

in our design, based on ShiftRow specification, we 

completely eliminated ShiftRows by selecting the 

diagonal of the state matrix (from lower-left corner to 

upper-right corner). The output of the state register 

after each shift operation is one column of the state 

matrix after ShiftRow. This reduces the control logics 

for the state register, and completely removes the logic 

for ShiftRow steps. In our datapath, in contrast with 8-

b architectures, MixColum is designed as pure 

combinational logics to reduce the number of flip-

flops. Thanks to this structure, the state register’s 

contents will be updated by next state data which are 

the contents of the output register concatenated with 

four last bytes of the round operation every four cycles 

(or after each round finishes) as described in Fig. 4. 

Consequently, we saved a 32-b register because we 

need to store only 3 × 4-B temporary data from the 

encryption path in the output register, while the last 

32-b data are written back directly into the state 

register. The output register is a simple 4 × 3-stage 

shift register to save area and power. The 32-b of both 

plaintext and key are loaded at the same time into the 

state register and the key register by using shift 

operations. By minimizing the number of flip-flops, we 

also reduced the number of clock buffers and the 

power consumption of the clock tree because clock 

buffers in the clock tree consume a large amount of 

power. The output register is a simple 4 × 3-stage shift 

register to save area and power. 

In between the state register and the output register, 

there are four S-boxes followed by the MixColums to 

enable processing 4 B in each clock cycle. The 

temporary results are stored in the output register. 

When the encryption finished, the results are written 

out from the output register. In the 128-b key 

configuration, AES encryption module needs ten 

rounds, which leads to 40 cycles to finish the 

encryption for a 128-b block of data. The total 

number of cycles to encrypt a block in our 

architecture is 44 cycles. For other key configurations, 

our architecture needs 52 and 60 cycles to encrypt a 

data block for 192- and 256-b key modes, respectively. 

Clock gating technique is applied on the state register 

and the output register separately to save the dynamic 

power consumption. For example, in data loading 

state, the clock to the output register is disabled to save 

power because there are no valid data to the output 

register. Furthermore, when in the inactive state, the 

output of these registers is not changed, which means 

that there is no activity in the encryption path. The 

power estimation results show that even in the highest 

throughput mode (44 cycles/encryption for 128-b key 

mode) the applied clock gating technique can save 

more than 13% of power. Certainly, with smaller 

throughput the clock gating technique can even save 

much more power consumption.  

SUBSTITUTION BOX: 

The S-box has a big impact on area and power 

consumption of the AES design. In our architecture, 

we chose S-box implementation for the lowest power 

consumption. S-boxes may occupy up to 60% of the 

total cell area, while they consume about 10%–20% of 

the total power consumption. The smallest 

implementation of S-boxes until now is from Canright 

[18]. Canright S-box demonstrates optimized area 

(292 gates/S-box) but needs more power/energy 

consumption 

 



Copyright @ 2018 ijearst. All rights reserved. 

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH  

SCIENCE AND TECHNOLOGY 
Volume.02, IssueNo.03, December -2018, Pages: 681-688 

 
 

because it creates more activities especially in 

architectures with eight S-boxes. The most popular 

and straightforward S-box implementation is the LUT-

based S-box. LUT-based  S-box is bigger in terms of 

area (434 gates/S-box) but smaller in power/energy 

consumption than Canright S-box. The most efficient 

S-box in terms of power consumption is DSE S-box; 

however, it occupies a larger area. DSE S-box can be 

further optimized for power consumption using the 

structure proposed in [20] and described in Fig. 5. 

The idea is to use an onehot decoder to convert S-box 

inputs into onehot representation. The nonlinear 

operations are done by using wire permutation as in 

lightweight cryptography algorithms. After that, the S-

box output in onehot encoding is converted back into 

theoriginal field. DSE S-Box can reduce the power 

consumption because it minimizes the activity inside 

the S-box circuit. After decoding state, only one signal 

changes its value to go to the encoding state. Most of 

the area lost is because of the size of encoder and 

decoder circuits. This optimization can leads to 10% 

power reduction to the whole design. Our synthesized 

DSE S-box has the size of 466 GEs/S-box that is 7% 

increase in size in comparison with LUT-based S-Box 

or 1.6 times the size of the smallest S-boxes. The S-

boxes in our design consume only 10% of the total 

power consumption. 

There are 10 rounds for full encryption. The four 

different stages that we use for Modified-AES 

Algorithm are: 1.Substitution bytes 2.ShiftRows 

3.Permutation 4.AddRoundKey 

Substitution Bytes, ShiftRows and AddRoundKey 

remain unaffected as it is in the AES. Here the 

important function is Permutation which is used 

instead of Mixcolumn. These rounds are managed by 

the IP table. Permutation is widely used in 

cryptographic algorithms. Permutation operations are 

interesting and important from both cryptographic and 

architectural points of view. The DES algorithm will 

provide us permutation tables. The inputs to the IP 

table consist of 128 bits. Modified-AES algorithm 

takes 128 bits as input. The functions Substitution 

Bytes and ShiftRows are also interpreted as 128 bits 

whereas the Permutation function also takes 128 bits. 

In the permutation table each entry indicates a specific 

position of a numbered input bit may also consist of 

256 bits in the output. While reading the table from 

left to right and then from top to bottom, we observe 

that the 242th bit of the 256-bit block is in first 

position, the 226th is in second position and so forth. 

After applying permutation on 128 bits we again 

complete set of 128 bits and then perform next 

remaining functions of algorithm. If we take the 

inverse permutation it gives again the original bits, the 

output result is a 128-bit cipher text. For the full 

decryption of Modified-AES algorithm the 

transformation processes are, Inv-Bytesub, Inv-

Shiftrows, Inv-Permutation, and the Addroundkey, 

which are performed in 10 rounds as it is in the 

encryption process 

RESULT: 

 



Copyright @ 2018 ijearst. All rights reserved. 

INTERNATIONAL JOURNAL OF ENGINEERING IN ADVANCED RESEARCH  

SCIENCE AND TECHNOLOGY 
Volume.02, IssueNo.03, December -2018, Pages: 681-688 

 
 

CONCLUSION:- 

Usually lightweight encryption algorithms are very 

attractive for multimedia applications. In version of 

security analysis and experimental results our 

proposed encryption scheme is fast and on the other 

hand it provides good security and adds very less 

overhead on the data, this today is the requirement of 

most of the multimedia applications. 

 

REFERENCES 

 

1. S. Reddy, “Easily testable realizations for 

logic functions,” IEEE Transactions on 

Computers, vol. 21, no. 11, pp. 1183–1188, 

1972. 

2. S. Golomb, Shift Register Sequences. Aegean 

Park Press, 1982. 

3. R. K. Brayton, C. McMullen, G. Hatchel, 

and A. Sangiovanni-Vincentelli, Logic 

Minimization Algorithms For VLSI 

Synthesis. Kluwer Academic Publishers, 

1984. 

4. E. McCluskey, “Built-in self-test techniques,” 

IEEE Design and Test of Computers, v  Vol. 

2, pp. 21–28, 1985. 

5. D. H. Green, “Families of Reed-Muller 

canonical forms,” International Journal of 

Electronics, vol. 70, pp. 259–280, 1991. 

6. M. Abramovici, M. A. Breuer, and A. D. 

Friedman, Digital Systems Testing and 

Testable Design. Jon Willey and Sons, New 

Jersey, 1994 

7. H.-J. Wunderlich, “BIST for systems-on-a-

chip,” Integration, the VLSI Journal, vol.  26, 

no. 1-2, pp. 55 – 78, 1998. 

8. M.G. Kuhn, R.J. Anderson. Soft tempest: 

hidden data transmission using 

electromagnetic emanations. Information 

Hiding 1998,LNCS 1525,pp.124-142,1998. 

 


